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ABSTRACT

The quasi-static parameters of multilayered

planar structures consisting of lossy and/or aniso-
tropic dielectric media are computed by utilizing a

simple, versatile discrete network analog having

complex (e.g. , RL, RC) branches. The method is

applied to compute the propagation constants,
impedances, and field distribution for typical

single and coupled strip structures.

INTRODUCTION

Of all the methods that have evolved over the

years for the computation of the propagation char-
acteristics and other properties of planar
structures, perhaps the most direct approach is the

use of the finite difference equations [e.g.,

1-3] . The corresponding resistive network analog
for lossless planar structures, together with

simple multiport network theory, enabled Lennartson

[1] to formulate a simple, yet accurate, computa-

t ional procedure for the capacitance matrix

elements of coupled microstrips. More recently,

the remarkably efficient and versatile method of

lines has also evolved from the finite difference

equations for the frequency-dependent parameters of
planar structures, as well as the solution of

three-dimensional problems [4-6]. In this paper,

Lennartson’s method is extended to apply to general
lossy, anisotropic multilayered structures. In

addition, it is shown that planar structures with

strips at different levels, as well as the effect

of strip thickness, can also be included in the

analysis and computations. Also, for a given

structure, the charge distribution on the strips,
the potential and, hence, the electric field varia-

tion everywhere can also be evaluated by using this

network analog approach. This conceptually simple,

direct, yet accurate, approach is intended to com-
plement other techniques with varying degrees of

complexity, accuracy, and sophistication that have

evolved over the years [e.g. , 4-15] for ttie study

of single and multilayered structures.

THE NETWORK ANALOG

The quasi-static fields are the solution of

Laplace’s equation subject to all the boundary
conditions of the structure. For the general

lossy, anisotropic case, the potential $ in each
region is a solution of

V.(:. v$l)=o (1)

where ~ is the permittivity dyadic. The boundary

conditions at the interface of two media 1 and 2

are given by,

A
n x (~1 -i2)=o (2a)

~ “ [(al fil +jufil) - (02 E2+jufi2)l =0 (2b)

where fil z = ‘V 01,2, ~Ic,2 = ~1 2 ● fil,2; CI is the
conducti~ity of the medium, and u is the frequen–

CY . The two-dimensional boundary value problem

associated with the evaluation of the quasi-TEM

characteristics of the layered planar structures

having, in general, 10SSY layers with a diagonal

permittivity tensor can then be expressed as,

E iL4+.y~=o
x ax2

(3a)

a+.
1s continuous at the (3b)

boundaries excluding

the strips

(u+jws)N is continuous at the (3C)

y ay boundaries excluding

the strips

and

$=Vi; i=l,2 ,..N on the strips (3d)

Expressing the above equations in a .Finite differ-

ence form [2,3] defines an electrical network

analog having complex branches as shown in Fig. 1 .

THE SOLUTION METHOD

For the case of infinitesimally thin strips on

layered losaless media, Lennartson solved for the
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charge on each strip by first deriving the total

resistance matrix representing the relationship

between the node voltages and currents at the

interface utilizing some basic transformations and

properties of the electrical network. He then

found the current in each strip which corresponds

to the total charge on the strip by adding the

currents on each node of the strip when a given

potential is applied on all the strips. The pro-

cedure given in [I] provides a simple computational

algorithm for obtaining the impedance matrix

associated with the node voltages and currents at

any interface. This procedure is readily modified

to apply to the case of lossy, anisotropic layered

structures with thin strips on one interface and to

the case of thick strips at different boundaries as

shown below.

The Nc voltages at a given boundary, where Nc

represents the number of columns in the discretiza-

tion scheme are expressed in terms of the

corresponding node currents in the form of an Nc x
Nc total impedance matrix as given by (Fig. 2),

V] = [Z] 1] (4)

We should note that in relation to the boundary

value problem, the elements of [Z] are essentially

a discrete representation of the boundary Green’s

function in real space. The elements of [Z] are

obtained as in [1] in an algebraically equivalent

t~ansformed domain in terms of a diagonal matrix
[Z] as given by

[;] = [A] [Z] [A] (5)

where [A] is an involutory matrix consisting of the

eigenvectors of the tridiagonal connection matrix

at each level [1]. The diagonal matrix elements at

the boundary level, L, are found from the

recurrence relation

;? . 1
1+1J

~,j = 1,2,..N
c (6)

—+ ljy

(a:)j(a~)j

where

( ak+lU,i)j

with

(7a)

(7b)

1 is the impedance of the series element corre-=U,2
spending to the first level from the upper and the

lower side, respectively. Aj’s are the eigenvalues

of

In

the connection matrix and are given by [1],

A. = 4 sin2 [2(~c+l)
J

“m ] ;j=l,2,...,Nc (8)

addition to the above straightforward modifica-

tion to the method given in [1], we should note

that for structures without a top or a bottom cover

(grounded plane), an asymptotic expression can be

derived for au or at by requiring that,

(ak+lU,t)j = (a~,g)j ‘(au,t)j; j = 1,.2,..NC (9)

This simplifies the computations for open struc-

tures and structures without a ground plane.

Equation (9), for an open structure, leads to:

Ajyz * [a?y2#+ 41.yzl 112

(au)j =
2Ajy

(lo)

where z and y are the impedance and the admittance

elements of the homogeneous material.

THICR AND MULTILEVEL STRIP CASE

For structures with strips at more than one

level or structures with thick strips, the above

procedure is generalized in terms of the impedance

matrix relating the voltages at the nodes of all

the interfaces where the strips are located to the

corresponding node currents. That is, the total

impedance matrix is now of the order nNc, where n

is the number of different levels where the strips

are located. However, the elements corresponding

to self terms are evaluated in exactly the same

manner as for the previous case and the mutual
terms are easily derived in the transformed diago-

nalized domain. The transfer impedance term in

this diagonalized domain relating the voltage on a

given interface node at level k to the current on

another interface node at level m in the same

column, j, is found to be (Fig. 2b):

,.

‘km= [,’” +ajyk
(a~)j

1-
(a~)j

—+J- “
1

+ ajym

(a~)j (a~)j

q=k-sgn(k-m) (a:) .
II ]=;& (11)

q=m+sgn(k-m) ~ + Ajyq

(a~)j

The transfer impedance matrix in real space

relating voltages at level k and currents at level
m is given by,

Vlk = [A] [~]ti [A] i]m~ [Z]ti I]m (12)
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RESULTS

The propagation chatactetietic~ of several
etructureo coneieting of single and coupled Ilnea

on Ioesyl anisotropic, and layered atructutee have

been cOmputed by utilizing the above tech”iquee.
In order to check the accuracy of our ccrlculationa,

we have computed the propagation charadterietica of

come uniaxial and Ioeay etructure~ for ~hlcl,
accurate, reliable reeulta are available. The even

and odd mode velocities calculated for BOme coupled

mlcroatripa on uniaxial subetratee are given in

Table 1, together with the same vaiuea computed by

Alexopouloa and Naaa [15-Table 1]. The teeults
obtained fot tl~e attenuation corrotant of a micro-

atrip line on eilicon are i3h0wn in Fig. 3, together
with the eeme reaulta obtained by Simpson and Taeng

[11]. Other reaulte obtained for MIS lines ate

alao found to be in good agreement with those in

[8] and [13] for the range of conductivitiea in the

10eey dielectric propagation region. Figure 4

EI1OWS the effect of the line thi~k”ees on the

propagation c,haracterietics of microetripa on IOSBY
subetratee. Figure 5 shows the micro etti P param-

eter for an inverted ml. ctoetrip

SPielman [1 1, tOgether with I,ie rea~~&ed ~~~
calculations for this caae were cOnducted with ~

top cover which reeulted in slight~y higher valuea

of the effective dielectric constant and tile ~tten_

uation constant. Figure 6 shows the pror!aflation.

characterstlcs of a simple symmetrical three 1 ine -
two level structure chosen to demonstrate the rippl Ic.

ation of this method to multilevel problems. Here the

~t}~s:v:jlocities of the three normal modes A ( odd )
- even ) and C ( even - odd ) are plotted as

a function of the ratio of the thickness of the two
dielectric layers.

We should mention tllat the typical compt, tation

time with a total of about 500 ro”e and 300 CoIumne

M

1 cl; “1 ~
.— ——— -. ———.

I—————_——__-—I%”L-’aT_”J__ _—--- -—_ _.
\---
----

>r Intetface nodes and 100 nodes on the metal

!tripa on an 11P 1000 model 65 is about 5, minutes

~rrd thnt the complexity of the configurate ion,
:~ud% the number of columns, is 0:1 IY ~i,”ite,l ‘~~
the storage and the speed of the computer. Aleo
:he method can be extended tO three-d i,ne,,eio”nl

layeted medium problems including resonators IJn~
lumped elements for MIC~ s,
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TABLE I
Calculated
Vel Ocitiles From [lU]

Xlo%s x108m/s

WI S/H E/H ‘De ‘L,o

EpsilamShielded 0.700 0.250 2.55 1.187 I.iii_

Epsilr.mUnshielded 0.800 i3.280 >6 1.107 1.192

Alumia Unshielded 0.875 0.260 >6 1.16 1.273

6oron Nitride Shielded 1.60 0.095 LEO 1.879 1.S62

SaPhire Shielded (90- off sat) 0.690 0-225 2.~o 1.265 1.255

SaPhfra Unshielded 0.730 0.260 76 1.093 1.231

‘ue ‘PO
1.207 1.210

1.138 1.204

1.15 1.286

1.876 1.875

1.256 1.257

1.086 1.227

Fig.1 A generic layered structure with N strips together with the network analog for a
representive region. Y’s and Z’s depend on the structure, e.g. ,
For lossy isotropic medium : Yi = Oi +jtoci; z i

= I/Yi; Yij = i(Yi + Yj )

For lossless anisotropic medium: Yi= Jw exi ; Zi * I/j we
yi

;Y ij = l(y{+yj)
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