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ABSTRACT

The quasi-static parameters of multilayered
planar structures consisting of lossy and/or aniso-
tropic dielectric media are computed by utilizing a
simple, versatile discrete network analog having
complex (e.g., RL, RC) branches. The method is
applied to compute the propagation constants,
impedances, and field distribution for typical
single and coupled strip structures.

INTRODUCTION

Of all the methods that have evolved over the
years for the computation of the propagation char-
acteristics and other properties of planar
structures, perhaps the most direct approach is the
use of the finite difference equations [e.g.,
1-31. The corresponding resistive network analog
for 1lossless planar structures, together with
simple multiport network theory, enabled Lennartson
[1] to formulate a simple, yet accurate, computa-—
tional procedure for the capacitance matrix
elements of coupled microstrips. More recently,
the remarkably efficient and versatile method of
lines has also evolved from the finite difference
equations for the frequency-dependent parameters of
planar structures, as well as the solution of
three-dimensional problems ([4-6]. In this paper,
Lennartson's method is extended to apply to general
lossy, anisotropic multilayered structures. In
addition, it is shown that planar structures with
strips at different levels, as well as the effect
of strip thickness, can also be included in the
analysis and computations. Also, for a given
structure, the charge distribution on the strips,
the potential and, hence, the electric field varia-
tion everywhere can also be evaluated by using this
network analog approach. This conceptually simple,
direct, yet accurate, approach is intended to com-
plement other techniques with varying degrees of
complexity, accuracy, and sophistication that have
evolved over the years [e.g., 4-15] for the study
of single and multilayered structures.

THE NETWORK ANALOG

The quasi-static fields are the solution of
Laplace's equation subject to all the boundary
conditions of the structure. For the general
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lossy, anisotropic case, the potential ¢ in each
region is a solution of

Ve (.7 =0 (1)

where ¢ is the permittivity dyadic. The boundary
conditions at the interface of two media 1 and 2
are given by,

>

n x (El -Ey)=0 (2a)
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=21

. [(01 ﬁl + jw 61) - (02 EZ + juw 32)} =0 (2b)

where El 2 = <V ¢ ﬁ 2 = . E 25 o 1is the
conductivity of the medlum, and ® 1s the frequen-
cye. The two-dimensional boundary value problem

associated with the evaluation of the quasi-TEM
characteristics of the layered planar structures
having, in general, lossy layers with a diagonal
permittivity tensor can then be expressed as,

2 2

83_‘2+€9_:§=0 (3a)
ax Y oy

%g is continuous at the (3b)
boundaries excluding
the strips

(o + juw € ) EQ- is continuous at the (3¢)

Y boundaries excluding
the strips
and
¢ =V, ; i=1,2,..N on the strips (3d)

1

Expressing the above equations in a finite differ-
ence form [2,3] defines an electrical network
analog having complex branches as shown in Fig. 1.

THE SOLUTION METHOD

For the case of infinitesimally thin strips on
layered lossless media, Lennartson solved for the
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charge on each strip by first deriving the total
resistance matrix vrepresenting the relationship
between the node voltages and currents at the
interface utilizing some basic transformations and
properties of the electrical network. He then
found the current in each strip which corresponds
to the total charge on the strip by adding the
currents on each node of the strip when a given
potential is applied on all the strips. The pro-
cedure given in [1] provides a simple computational
algorithm for obtaining the impedance matrix
associated with the node voltages and currents at
any interface. This procedure is readily modified
to apply to the case of lossy, anisotropic layered
structures with thin strips on one interface and to
the case of thick strips at different boundaries as
shown below. '

The N, voltages at a given boundary, where N,
represents the number of columns in the discretiza-
tion scheme are expressed in terms of the
corresponding node currents in the form of an N, x

N. total impedance matrix as given by (Fig. 2),

vl = [Z] 1] (%)

We should note that in relation to the boundary
value problem, the elements of [Z] are essentially
a discrete representation of the boundary Green's
function in real space. The elements of [Z] are
obtained as in [l1] in an algebraically equivalent
tyansformed domain in terms of a diagomal matrix
{Z] as given by

[z] - [A] [2] [A] ()

where [A] is an involutory matrix consisting of the
eigenvectors of the tridiagonal connection matrix
at each level [l]. The diagonal matrix elements at
the boundary 1level, L, are found from the
recurrence relation

L 1
zZ: = s d = 1,2,40N (6)
J 1 + 1 + X,yL c
(@), (b,
u’j 273
where
+
(ak i). - + zk+1 (7a)
u,2’] 1 2 yk
(mk 3
u,l)j
with
11
au,l = zu’g (7b)
1

Zg g is the impedance of the series element corre~
spdnding to the first level from the upper and the
lower side, respectively. Aj's are the eigenvalues

of the connection matrix and are given by [l],
_ . 2 im s
A = 4 sin [Z(NCH)] 33 = 12,000,N, (8)

In addition to the above straightforward modifica-
tion to the method given in [1], we should note
that for structures without a top or a bottom cover
(grounded plane), an asymptotic expression can be

derived for oy OT ag by requiring that,

K+l
(au,l)j = (

k
qu,ﬁ 3

e
—~
{+]

u,z)j; j= 1,2,..NC (9)

This simplifies the computations for open struc-

tures and structures without a ground plane.
Equation (9), for an open structure, leads to:
A.vz + [A%y222+ Z;)\.yz]l/2
(o), =1 = . (10
u’j 2Xx.y

J

where z and y are the impedance and the admittance
elements of the homogeneous material.

THICK AND MULTILEVEL STRIP CASE

For structures with strips at more than one
level or structures with thick strips, the above
procedure is generalized in terms of the impedance
matrix relating the voltages at the nodes of all
the interfaces where the strips are located to the
corresponding node currents. That is, the total
impedance matrix is now of the order nN_ , where n
is the number of different levels where the strips
are located. However, the elements corresponding
to self terms are evaluated in exactly the same
manner as for the previous case and the mutual
terms are easily derived in the transformed diago-
nalized domain. The transfer impedance term in
this diagonalized domain relating the voltage on a
given interface node at level k to the current on
another interface node at level m in the same
column, j, is found to be (Fig. 2b):

1
m
s [ 1 (au)J .
km 1 + ijk 1m . 1m + ijm
(o )J (au)j (az)J
1
q=k-sgn(k-m) (ai). N
.
T =] = 2, (11
q=mt+sgn(k-m) + Ay
(o, J
u'j

The transfer impedance matrix in real space
relating voltages at level k and currents at level
m is given by,

vl = [A] (2], (A} 4] A (2] 1) (12)



RESULTS or 1interface nodes and

100 nodes on the metal
steips on an HP 1000 mod

el 65 1s about 5 minutes

and that the complexity of the configuration, {n-

The propagation characteristics of several cluding the number of columns, 18 only Iimited by

structures conelsting of single and coupled lines the storage and the speed of the computer.  Also

on lossy, anisotropic, and layered structures have the method can be extended to three~-dimensional

been computed by utilizing the above techniques. layered medlum problems including resonators and
In order to check the sccuracy of our calculations, lumped elements for MIC's

vwe have computed the propagation characdteristics of y

some uniaxial and lossy structures for which
accurate, reliasble results are avallable. The even REFERENGES
and odd mode veloclties calculated for some coupled
mlicrostrips on uniexial substrates are glven in

Table 1, together with the game values computed by 1. B-L~58Lzennartson, (1972), 1EEE Trans. NTT-20;
Alexopoulos and Maas [15-Table 1]. The results 2 gp. Li.b (195

obtained fori the attenuation constant of a micro- * Yl.l sicae ‘\I;:T"l 09)2’ Brit.  Jour. Appl.
strip line on sllicon are shown in Fig. 3, together 3. Mz SC'I\neid.er ’ (plp9.65) . —_— 5

vith the same resulte obtained by Simpson and Teeng 13 . 793 ’ p LE Trans. MIT, vVol,
[r1). Other results obtained for Mig lines are 4y ’Sp[;.l .

8lso found to be in good agreement with those in * Y. vchu "-1 R. Pregla, (1980), Acch. Elect. u
(8] and [13] for the range of conductivities in the Ubertrag 34, pp. 169.

lossy dielectric propegation region. Flgure 4 3+ S.B. Worm, R. Pregla,

(1984), 1EEE Trans. MIT,
shows the effect of the line thickness on the vol. 32, pp. 191.

propagation characteristics of microstrips oun lossy 6. R. P;:gla, §-B. Worm, (1984), IEEE-S-MTT Dig.,
substrates. Figure 5 shows the mlcrostrip param— 7 [;PM 11 . -
eters  for an {nverted microstrip etudied by ) 777, fyltin, (1965), 1EEE Trans. MTT-13; pp.
Splelman (1 }, together with his results. Our 8. 1 ;‘ .
calculations for this case were conducted with a ) 194 poedsonds et al., (1971), IEEE Trans. HTT-
top cover which resulted in slightly higher values 9 i PP 869, .
of the effective dielectric constant and the atten- . ';(;A P“°3‘3[12' et al., (1968), IEEE Trams. MIT-
uvation constant, Filgure 6 shows the propagation ; pp. 342,
y : 10. Ve i -
characterstics of a simpie symmetrical three 1ine - 0 :pv 2;?;"e1der’ (1959), BS13-48, pp. 1421 and
two level structure chosen to demonstrate the applic- 1 iy :
ation of this method to multilevel problems. ?ere the : ;;;:Zflm:;onlggd P. Toeng, (1976), LEEE Traus.
hase velocities of the three normal modes A ( odd ) Yyt p !
g { even - even ) and ¢ { even - odd ) are plotted as 12. ?gg: Splelman, (1977), 1EEE Trans. MIT-25, pp.
e ynction °{at2§s"“° of the thickness of the two 13 G.W. llughes and R.M. White, (1975), 1
Yy . Trans. ED-22, pp. 945,
We should mention that the typical computation L R-F. Marrington and c. Wel, (1984), 1kEE
time with a totsl of about 500 rows and 300 columne Trans. MIT-32, pp. 705.
15. N.g. M exopoulos and §.A. Maas, (1982), 1cEg
Trans., MTT-30, pp. 1267.
>
€y, O Calculated
1 R\ 2 TABLE I Velocities  From [10]
B e S B B A x108m/! xIOBm/!
WH SIH__ 8 Yoo po Yoo Ypo
Epsilam Shielded 0.700 0.250 2.5 1.187 1.193 1.207 1.210
T T e e e e et e ot e Epsilam Unshielded 0.800 0.280 >§ 1.107 1,192 1.138 1.204
Alumia Unshialded 0.875 0.260 >6 1.16 1.273 1.15 1.286
t{,—_vj— 8oron Nitride Shielded 1.60 0.095 2.80 1.879 1.862 1.87¢ 1.875
[ —— et . Saphire Shielded (90° offset) 0.690 0.225 2.20 1.265 1.255 1.256 1.257
?, ] Saphire Unshielded 0.730 0.260 =6 1.093 1.231 1.086 1.227
- — - T
——e

——
—~——
-~

Fig.1l A generic layered structure with N strips together with the network analog for a
representive region. Y's and 2's depend on the structure,e.g.,

For Tossy isotropic medium : Yi =0y + J wey 3 Z1 = 1/Y1; Yij = Q(Vi + YJ )
Foir lossless anisotropic medium: Y1= Ju €y $ Zi = 1/3 wey g 3 Yij = L(Yi+YJ)
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